In [ ]:
%matplotlib inline
Digits Classification Exercise¶
A tutorial exercise regarding the use of classification techniques on the Digits dataset.
This exercise is used in the clf_tut
part of the
supervised_learning_tut
section of the
stat_learn_tut_index
.
In [ ]:
print(__doc__)
from sklearn import datasets, neighbors, linear_model
X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()
n_samples = len(X_digits)
X_train = X_digits[:int(.9 * n_samples)]
y_train = y_digits[:int(.9 * n_samples)]
X_test = X_digits[int(.9 * n_samples):]
y_test = y_digits[int(.9 * n_samples):]
knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression(max_iter=1000)
print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))
print('LogisticRegression score: %f'
% logistic.fit(X_train, y_train).score(X_test, y_test))