In [ ]:
%matplotlib inline

Label Propagation digits active learning

Demonstrates an active learning technique to learn handwritten digits using label propagation.

We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing max_iterations. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active learning technique.

A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels.

In [ ]:

# Authors: Clay Woolam <[email protected]>
# License: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import LabelSpreading
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(

X =[indices[:330]]
y =[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 40
max_iterations = 5

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()

for i in range(max_iterations):
    if len(unlabeled_indices) == 0:
        print("No unlabeled items left to label.")
    y_train = np.copy(y)
    y_train[unlabeled_indices] = -1

    lp_model = LabelSpreading(gamma=0.25, max_iter=20), y_train)

    predicted_labels = lp_model.transduction_[unlabeled_indices]
    true_labels = y[unlabeled_indices]

    cm = confusion_matrix(true_labels, predicted_labels,

    print("Iteration %i %s" % (i, 70 * "_"))
    print("Label Spreading model: %d labeled & %d unlabeled (%d total)"
          % (n_labeled_points, n_total_samples - n_labeled_points,

    print(classification_report(true_labels, predicted_labels))

    print("Confusion matrix")

    # compute the entropies of transduced label distributions
    pred_entropies = stats.distributions.entropy(

    # select up to 5 digit examples that the classifier is most uncertain about
    uncertainty_index = np.argsort(pred_entropies)[::-1]
    uncertainty_index = uncertainty_index[
        np.in1d(uncertainty_index, unlabeled_indices)][:5]

    # keep track of indices that we get labels for
    delete_indices = np.array([], dtype=int)

    # for more than 5 iterations, visualize the gain only on the first 5
    if i < 5:
        f.text(.05, (1 - (i + 1) * .183),
               "model %d\n\nfit with\n%d labels" %
               ((i + 1), i * 5 + 10), size=10)
    for index, image_index in enumerate(uncertainty_index):
        image = images[image_index]

        # for more than 5 iterations, visualize the gain only on the first 5
        if i < 5:
            sub = f.add_subplot(5, 5, index + 1 + (5 * i))
            sub.imshow(image,, interpolation='none')
            sub.set_title("predict: %i\ntrue: %i" % (
                lp_model.transduction_[image_index], y[image_index]), size=10)

        # labeling 5 points, remote from labeled set
        delete_index, = np.where(unlabeled_indices == image_index)
        delete_indices = np.concatenate((delete_indices, delete_index))

    unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
    n_labeled_points += len(uncertainty_index)

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
           "uncertain labels to learn with the next model.", y=1.15)
plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2,